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We study statistical properties of zeros of random polynomials and random
analytic functions associated with the pseudoeuclidean group of symmetries
SU(1, 1), by utilizing both analytical and numerical techniques. We first show
that zeros of the SU(1, 1) random polynomial of degree N are concentrated in a
narrow annulus of the order of N−1 around the unit circle on the complex plane,
and we find an explicit formula for the scaled density of the zeros distribution
along the radius in the limit NQ.. Our results are supported through various
numerical simulations. We then extend results of Hannay (1) and Bleher et al. (2)

to derive different formulae for correlations between zeros of the SU(1, 1)
random analytic functions, by applying the generalized Kac–Rice formula. We
express the correlation functions in terms of some Gaussian integrals, which can
be evaluated combinatorially as a finite sum over Feynman diagrams or as a
supersymmetric integral. Due to the SU(1, 1) symmetry, the correlation func-
tions depend only on the hyperbolic distances between the points on the unit
disk, and we obtain an explicit formula for the two point correlation function. It
displays quadratic repulsion at small distances and fast decay of correlations at
infinity. In an appendix to the paper we evaluate correlations between the outer
zeros |zj | > 1 of the SU(1, 1) random polynomial, and we prove that the inner
and outer zeros are independent in the limit when the degree of the polynomial
goes to infinity.

KEY WORDS: Random polynomial; pseudo-sphere; correlations between zeros.

1. INTRODUCTION

In this paper we are interested in statistical properties of zeros of random
polynomials and random analytic functions associated with the pseudo-
euclidean group of symmetries SU(1, 1). The motivation for the study of
zeros of random polynomials and random analytic functions comes from



different applications, most importantly from the theory of quantum chaos
(see papers of Bogomolny et al., (3) Leboeuf and Shukla, (4) Hannay, (1)

Korsch et al., (5) Nonnenmacher and Voros, (6) Forrester and Honner, (7)

Leboeuf, (8) Shiffman and Zelditch, (9) and others). There are different
ensembles of random polynomials associated with different groups of
symmetries, like in the theory of random matrices (see ref. 10), although
the symmetry plays somewhat different role in the ensembles of random
matrices and random polynomials. The O(n+1) ensemble of random
polynomials consists of multivariate homogeneous real polynomials of
(n+1) variable z=(z0, z1,..., zn) of the form

k(z)= C
|m|=N

`Cm
N amzm, (1)

where m=(m0, m1,..., mn) is a multiindex, |m|=m0+m1+·· ·+mn, zm=
zm0
0 zm1

1 · · · zmn
n , C

m
N is the multinomial coefficient,

Cm
N —

N!
m0! m1! · · ·mn!

, (2)

and am are independent standard, N(0, 1), real Gaussian random variables.
Consider the set Z of joint real zeros of k, k [ n, independent copies of the
O(n+1) random polynomial in the projective space RPn. This is a random
real algebraic variety of dimension n−k. It is nondegenerate almost surely
and it possesses a natural volume element induced by the standard metric
in RPn. The joint distribution functions of the zeros are invariant with
respect to the action of the group O(n+1), and, in particular, the density
function of the zeros is constant (cf. refs. 2, 11, and 12).

Similarly, the SU(n+1) ensemble of random polynomials consists of
multivariate homogeneous complex polynomials of (n+1) complex vari-
able z=(z0, z1,..., zn) of form (1) where am are independent standard
complex Gaussian random variables (cf. refs. 1–3, 12–14). It corresponds to
the unitary ensemble of random matrices. The distribution of joint zeros of
k independent copies of the SU(n+1) random polynomial is invariant with
respect to the action of the group SU(n+1) on the complex projective
space CPn. As the degree N of the SU(n+1) random polynomial goes to
infinity, the scaled correlation functions of zeros approach a limit, which is
represented by the correlation functions of the Wn ensemble of random
analytic functions (see refs. 1, 2, 8, 12–14). The latter consists of random
functions of the form

k(z)=C
m

= 1
m!

amzm, (3)
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where the sum runs over multiindices m=(m1,..., mn) with mj \ 0, m!=
m1!,..., mn!, and am are independent standard complex Gaussian random
variables. The existence of the limit for the scaled correlation functions of
zeros is valid in a very general framework of random sections of powers of
line bundles over compact manifolds and the limit is universal (see refs. 2,
12–14). The explicit combinatorial formulae for the limit of two-point cor-
relation functions are obtained in refs. 2, 12–14. They demonstrate a
quadratic repulsion if k=n=1, neutrality if k=n=2, and attraction if
k=n > 2.

In this paper we are interested in the pseudoeuclidean, SU(1, 1)
ensemble of random analytic functions. The general SU(n, 1) ensemble
consists of multivariate analytic functions of the form

k(z)=C
m
`Cm

|m|+L−1 amz
m, z=(z1,..., zn), (4)

where L \ 1 is a fixed integer, a parameter of the ensemble, the sum runs
over multiindices m=(m1,..., mn) with mj \ 0, zm=zm1

1 · · · zmn
n ,

Cm
|m|+L−1 —

(|m|+L−1)!
(L−1)! m1! · · ·mn!

, (5)

and am are independent standard complex Gaussian random variables. We
will restrict our study to the case n=1. The basic calculations are extended
to the case of any n, and we are going to return to this extension in sub-
sequent publications. Another possible extension concerns the universality
result like in refs. 2, 12, and 15. We would like also to mention here the
recent works by Jancovici and Téllez, (16) who consider the one-component
plasma on the pseudosphere, and by Zyczkowski and Sommers, (17) in which
truncated random unitary matrices are shown to have an eigenvalue
density uniform on the pseudosphere.

The plan of the paper is the following. In Section 2 we consider the
ensemble of SU(1, 1) random polynomials, which is obtained by restricting
m in (4) to be bounded by N (with n=1). We calculate the density function
for the distribution of zeros of the SU(1, 1) random polynomial and we
show that the zeros are concentrated in a narrow annulus around the unit
circle, of the width of the order of 1/N. We find the scaled profile of the
density function along the radius in the limit NQ.. In Section 2.2 we
rederive the result of Leboeuf (8) for the density of the SU(1, 1) random
analytic function. In Section 3 we derive different formulae for the correla-
tion functions between zeros of the SU(1, 1) random analytic function.
First, we apply the general result of ref. 2 to get the Kac–Rice type expres-
sion for the n-point correlation function. We then specify it for the case of
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Gaussian random coefficients (cf. refs. 1, 2, and 18). This expresses the
n-point correlation function in terms of some Gaussian averages, which is
further represented as a sum over Feynman diagrams, or in a different
approach developed in ref. 14, as a supersymmetric integral. In Section 3.3
we carry out concrete calculations for the two point correlation function in
the SU(1, 1) ensemble. They demonstrate a quadratic repulsion at small
distances and fast decay at infinity. In the limit when the main parameter L
of the SU(1, 1) polynomial goes to infinity we recover the W1 correlation
function of Hannay. There is an appendix at the end of the paper, in which
we consider correlations between outer zeros zj, |zj | > 1, of the SU(1, 1)
random polynomial. We show that in the limit NQ., the outer zeros are
independent of the inner zeros |zj | < 1, and after changing the variable z to
1/z, the correlations between outer zeros coincide with the correlations
between zeros in the SU(1, 1) ensemble with L=1.

2. BASIC STATISTICAL PROPERTIES

2.1. Scaled Density Function

Consider the following random polynomial, associated with the pseudo-
euclidean group SU(1, 1):

k(z)= C
N

m=0
`Cm

m+L−1 amz
m, Cm

m+L−1 —
(m+L−1)!
(L−1)! m!

, (6)

where L is a fixed positive integer, a parameter of the problem, Cm
m+L−1 are

Newton’s binomial coefficients, and am are independent standard complex
Gaussian random variables, so that

Eam=0, Eaman=dmn, Eaman=0. (7)

When L=1, (6) reduces to the classical form

k(z)= C
N

m=0
amzm. (8)

We wish to investigate the density of zeros pN(z) for the SU(1, 1) polyno-
mial (6) as NQ.. The density pN(z) is determined by the condition that
for any test function j(z), which is infinitely differentiable and compactly
supported,

E 1 C
N

j=1
j(zj)2=F

C
pN(z) j(z) dz, dz — dx dy, (9)
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where zj are zeros of the random polynomial k(z). Since the total number
of zeros is equal to N, we have that

F
C
pN(z) dz=N. (10)

Observe that the polynomial

k(e ihz)= C
N

m=0
`Cm

m+L−1 ame
imhzm (11)

has the same probability distribution as k(z), hence

pN(re ih)=pN(r). (12)

The general formula for pN(z) is given by the Poincaré–Lelong type
expression

pN(z)=
1
p

“
2

“z “z̄
[ln E(k(z) k(z))] (13)

(see refs. 8 and 13). From (6),

E(k(z) k(zŒ))= C
N

m=0
Cm

m+L−1(zzŒ)
m

=
1

(L−1)!
C
N

m=0
(m+1) · · · (m+L−1)(zzŒ)m. (14)

In particular,

E(k(z) k(z))=FN, L(x) — C
N

m=0
Cm

m+L−1x
m

=
1

(L−1)!
C
N

m=0
(m+1) · · · (m+L−1) xm. (15)

where here and in what follows we use the notation

x=zz̄=|z|2. (16)
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It is obvious that

FN, L(x) > 0, -x \ 0. (17)

Substituting (15) into (13) gives that

pN(z)=
1
p
5x 1F

−

N, L(x)
FN, L(x)
2Œ+F −

N, L(x)
FN, L(x)
6 . (18)

We further define

GN, L(x)= C
N

m=0
xm+L−1=xL−1 x

N+1−1
x−1

. (19)

Then from (15),

FN, L(x)=
1

(L−1)!
dL−1GN, L(x)

dxL−1 . (20)

Numerical simulations show that most of the roots of SU(1, 1) polyno-
mials (6) are concentrated in a small annulus (of the width of the order
of 1/N) near the unit circle. This property is illustrated in Fig. 1, which
contains a point-plot of the zeros of 150 SU(1, 1) polynomials of degree
N=200, with L=30.

To get the asymptotics of the density pN(z) near the unit circle, we
introduce a scaling of the variable x in the form

x=1+
s
N
. (21)

Then,

d
dx

=N
d
ds
. (22)

In subsequent calculations, we will assume that

−A [ s [ A, (23)

for some arbitrary fixed A > 0. The notation R(s)=O(N−1) used below
means that there exists some C(A) > 0 so that |R(s)| [ C(A) N−1 for all
s ¥ [−A, A]. The main result of this section is the following theorem.
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Fig. 1. Zeros of SU(1, 1) random polynomials.

Theorem 2.1. As NQ.,

N−2pN
111+ s

N
21/2 e ih2=1

p
5 g (L)(s)
g (L−1)(s)
6Œ+O(N−1). (24)

where

g (j)(s)=
d j

ds j
1e s−1

s
2. (25)

Remark. Observe that one N in the normalization of pN(z) on the
left is due to the rescaling (21) and one is due to the integral condition (10).

Proof. By substituting (21) into (19) we obtain that as NQ.,

GN, L(x)=11+
s
N
2L−1 (1+ s

N)
N+1−1
s
N

=N
e s−1
s

(1+O(N−1))

=Ng(s)(1+O(N−1)), (26)
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where we define

g(s)=
e s−1
s

=C
.

j=0

s j

(j+1)!
. (27)

Observe that for j=0, 1, 2,...,

g (j)(s) —
d jg(s)
ds j

> 0, −. < s <.. (28)

It is obvious from (27) for s \ 0. For negative s, use the identity

g (j)(−s)=
j!
s j+1
51−e−s 11+ s

1!
+· · ·+

s j

j!
26 . (29)

Formula (26) holds obviously in a small complex neighborhood of the
segment −A [ s [ A. Therefore, we can differentiate it in s, so that

d jGN, L(x)
dx j =N j+1g (j)(s)(1+O(N−1)), (30)

Thus, from (20), we obtain that

FN, L(x)=
NLg (L−1)(s)
(L−1)!

(1+O(N−1)), g (L−1)(s) —
dL−1g(s)
dsL−1 , (31)

and

F −

N, L(x)=
NL+1g (L)(s)
(L−1)!

(1+O(N−1)), (32)

hence

F −

N, L(x)
FN, L(x)

=
Ng (L)(s)
g (L−1)(s)

(1+O(N−1)). (33)

Let us go back to formula (18). In this formula, x=1+O(N−1), and the
first term in the brackets has an extra derivative so this is the leading term,
and we can neglect the second term. This gives that

N−2pN(z)=
1
p
5 g (L)(s)
g (L−1)(s)
6Œ+O(N−1), zz̄=1+

s
N

, (34)

which was stated. Theorem 2.1 is proved.
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Equation (24) can also be expressed in the following form:

N−2pN(z)=
1
p
[log g (L−1)(s)]œ+O(N−1). (35)

From (24),

lim
NQ.

N−2pN
111+ s

2N
2 e ih2=p(s) —

1
p
5 g (L)(s)
g (L−1)(s)
6Œ

=
1
p
[log g (L−1)(s)]œ. (36)

Consider now the distribution function of zeros. Define

PN(x)=N−1E#{j: |zj |2 [ x} , (37)

which gives the expected value of the fraction of zeros in the disk of radius
`x. Then

P −N(x)=N−1ppN(z), x=|z|2. (38)

Hence (24) implies that

PN
11+ s

N
2= g (L)(s)

g (L−1)(s)
+O(N−1). (39)

As follows from (29), the limiting distribution function,

lim
NQ.

PN
11+ s

N
2=P(s) —

g (L)(s)
g (L−1)(s)

, (40)

has the following asymptotics at −.:

P(s)=−
L
s
+O((−s)L−1e s), sQ −.. (41)

At+. we use the formula

g (j)(s)=
e s

s
51−j

s
+
j(j−1)

s2
− · · ·+

(−1) j j!
s j
6+(−1) j+1 j!

s j+1 , (42)
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which gives that

1−P(s)=
1
s
−
L−1
s2

+O(s−3), sQ.. (43)

For L=1, (40) reduces to the well-known result (see ref. 19)

P(s)=
se s−e s+1
s(e s−1)

. (44)

For L=1, the limiting distribution is symmetric, so that

P(1−s)=1−P(s) (45)

(it is related to the symmetry of the zeros of k(z) in (8) with respect to the
transformation zQ 1/z). Since

g(s)=1+
s
2!
+
s2

3!
+
s3

4!
+· · · , (46)

we have that

g (j)(s)=
1

j+1
+

s
1! (j+2)

+
s2

2! (j+3)
+

s3

3! (j+4)
+· · · . (47)

Thus,

PN
11+ s

N
2=

1
L+1

+
s

1! (L+2)
+

s2

2! (L+3)
+· · ·

1
L
+

s
1! (L+1)

+
s2

2! (L+2)
+· · ·

+O(N−1). (48)

In particular,

PN(1)=
L

L+1
+O(N−1), (49)

which means that the expected value of the fraction of zeros inside the unit
disk is asymptotically equal to L/(L+1).

In our numerical simulations we generated a large number of SU(1, 1)
random polynomials of degree N, calculated the zeros using standard
techniques, and counted the number of zeros in annuli of fixed width,
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Fig. 2. The scaled density function—theoretical limit and computer simulation.

which are concentrically spread around the origin, per one polynomial. The
scaled density was obtained by dividing each of these numbers by the area
of the corresponding annulus, as well as by adjusting it with respect to N
(according to the previously established result). Figure 2 shows the results
of this procedure for L=4 and N=150, in comparison with the theoretical
value as given by Eq. (24).

2.2. SU(1, 1) Ensemble of Random Analytic Functions

In this section we consider the SU(1, 1) random analytic function,

k(z)= C
.

m=0
`Cm

m+L−1 amz
m, (50)

which is obtained from (6) by setting N=.. Here again Cm
m+L−1 are

Newton’s binomial coefficients, and am are independent standard complex
Gaussian random variables.
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Proposition 2.2. Random series (50) converges almost surely for all
|z| < 1. For all mutually distinct z1,..., zn, in the disk |z| < 1 the covariance
matrix

An=(E(k(zp) k(zpŒ)))p, pŒ=1,..., n (51)

is positive definite.

Proof. Almost sure convergence. Observe that (m+j)/m [ j+1
hence

(m+1) · · · (m+L−1)
mL−1 [ L! (52)

and

Cm
m+L−1=

(m+L−1) · · · (m+1)
(L−1)!

[ LmL−1. (53)

Consider the set

LN={a=(a0, a1,...) : |am | [ m -m \N}. (54)

Then for all a ¥ LN series (50) converges and

lim
NQ.

Prob LN=1, (55)

which implies the almost sure convergence.

Positive definiteness. Consider the quadratic form

An(m)= C
n

p, pŒ=1
E(k(zp) k(zpŒ)) mp mpŒ=E : C

n

p=1
mpk(zp) :

2

. (56)

Assume that An is not positive definite. Then, for some nonzero vector
m=(m1,..., mn),

C
n

p=1
mpk(zp)=0 (57)

for almost all k. Hence, (57) holds for almost k with coefficients vector
a ¥ LN. Assume that N> n. There exists a polynomial

k0(z)= C
n−1

m=0
`Cm

m+L−1 a
0
m z

m, (58)
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such that

k0(zp)=mp, (59)

so that

C
n

p=1
mpk0(zp)=C

n

p=1
|mp |2 ] 0. (60)

Let a0=(a0
0, a

0
1,..., a

0
n−1, 0, 0,...). From (54), it is obvious that if a ¥ LN

then (a+a0) ¥ LN. The shift aQ a+a0 is a measurable one-to-one trans-
formation in LN, hence for almost all vectors a ¥ LN we have that (57)
holds along with

C
n

p=1
mp[k(zp)+k0(zp)]=0. (61)

But this implies that

C
n

p=1
mpk0(zp)=0, (62)

which is in contradiction with (60). This contradiction proves the positive
definiteness of An. Proposition 2.2 is proved.

Remark. The above proof gives also the positive definiteness of
the covariance matrix An corresponding to the random polynomial (6),
provided N> n.

In this section, we will be interested in the density function r(z) of the
distribution of zeros of (50) in the disk |z| < 1. We have from (8) that

E(k(z) k(zŒ))= C
.

m=0
Cm

m+L−1(zzŒ)
m=

1
(1−zzŒ)L

. (63)

In particular,

E(k(z) k(z))=f(x) —
1

(1−x)L
, x — zz̄=|z|2. (64)
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In terms of f the density function r(z) of the zeros of (50) is given by:

r(z)=
1
p
5x 1fŒ(x)

f(x)
2Œ+fŒ(x)

f(x)
6. (65)

Substituting (64) into this formula gives that

r(z)=
1
p
5x 1 L

1−x
2Œ+ L

1−x
6= L
p(1−x)2

, (66)

or going back to the complex variable z, we obtain the result of Leboeuf, (8)

r(z)=
L

p(1− |z|2)2
. (67)

Numerical simulations were similar to those of the previous section. The
density was simply obtained by dividing the number of counted zeros by
the area of the corresponding annulus. Figure 3 shows the results of this
procedure for the degree N equal to 50, 75, 100, and 150, in comparison
with the theoretical value as given by Eq. (67).

Fig. 3. The unscaled density function—theoretical limit and computer simulation.
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3. CORRELATIONS BETWEEN ZEROS

3.1. The SU(1, 1) Symmetry

We have the following important property:

Theorem 3.1. The distribution of zeros of the random analytic
function (50) is invariant with respect to the action of the group SU(1, 1),

zQ
az+b
cz+d

, Ra b
c d
S ¥ SU(1, 1). (68)

Remark. This implies that all joint distribution functions of zeros of
k(z) are SU(1, 1) invariant.

Proof. Consider the following homogeneous analytic function of two
variables:

Y(z0, z1)=z−L
0 C

.

m=0
`Cm

m+L−1 am 1
z1
z0
2m, |z1 | < |z0 |. (69)

Then

Y(1, z1)=k(z1). (70)

Let us find the covariance function of Y(z0, z1):

E(Y(z0, z1) Y(z
−

0, z
−

1))=(z0z
−

0)
−L C

.

m=0
Cm

m+L−1
1z1z −1
z0z

−

0

2m

=(z0z
−

0)
−L 11−z1z

−

1

z0z
−

0

2−L

=(z0z
−

0 −z1z
−

1)
−L. (71)

The action of a matrix A ¥ SU(1, 1) preserves the (1,1) indefinite scalar
product z0z

−

0 −z1z
−

1. Thus, the covariance function of the Gaussian random
analytic function Y(z0, z1) is SU(1, 1) invariant. In addition,

EY(z0, z1)=0, EY(z0, z1) Y(z
−

0, z
−

1)=0. (72)

For the Gaussian random function, the first two moments determine it
uniquely. This implies that the distribution of zeros of Y(z0, z1) is SU(1, 1)
invariant. Restricting this to z0=1 we get that the distribution of zeros of
k(z) is SU(1, 1) invariant as well. Theorem 3.1 is proved.
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Recall that a general formula for a matrix A ¥ SU(1, 1) is the following:

A=Ra b
b̄ ā
S , |b|2−|a|2=1, (73)

so that it depends on three real parameters. An SU(1, 1)-invariant metric is

ds2=
4(dx2+dy2)
(1−x2−y2)2

, (74)

and the corresponding distance y(z1, z2) on the disk {|z| < 1} is determined
by the equation

tanh(y/2)=
|z1 −z2 |
|1−z1z2 |

. (75)

The corresponding SU(1, 1)-invariant volume element is

4dx dy
(1−x2−y2)2

. (76)

Theorem 3.1 implies the SU(1, 1) invariance for the normalized correlation
functions.

3.2. Correlation Functions—Preliminaries

The n-point correlation function Kn(z1,..., zn) is determined by the
condition that for any test functions j1(z),..., jn(z), which are infinitely
differentiable and compactly supported in the disk {|z| < 1}, such that their
supports do not intersect,

E D
n

p=1

1 C
.

j=1
jp(zj)2=F

C
n
Kn(z1,..., zn) D

n

p=1
[j(zp) dzp], (77)

where zj are zeros of the SU(1, 1) random analytical function k(z) (we
denote them by zj to distinguish them from the variables zj). The sum over
j is, in fact, finite because jp(z) has a compact support. The general
formula for Kn(z1,..., zn) is given by the Kac–Rice expression

Kn(z)=F dt Dn(0, t; z) D
n

p=1
(tpt

g
p), z=(z1,..., zn), t=(t1,..., tn),

(78)
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where Dn(x, t; z), x, t ¥ Cn, is the distribution density of the two random
vectors

X=(k(z1),..., k(zn)), X=(kŒ(z1),..., kŒ(zn)). (79)

Formula (78) is derived in ref. 2 in a much more general situation of sec-
tions of powers of a line bundle over a complex manifold, as a generaliza-
tion of the original formula by Kac (20) and Rice (21) (see also refs. 1 and 18).

For the Gaussian random functions, formula (78) can be specialized as
follows (see refs. 1, 2, and 18):

Kn(z)=
1

pn det An

7D
n

p=1
(tpt

g
p)8Ln , (80)

where

An=(E k(zp) k(zpŒ))p, pŒ=1,..., n, (81)

and O ·PLn stands for averaging with respect to Gaussian complex random
variables t1,..., tn, such that

(E tptpŒ)p, pŒ=1,..., n=Ln, E tp=0, E tptpŒ=0, p, pŒ=1,..., n,
(82)

where

Ln=Cn −Bg
nA

−1
n Bn (83)

and

Bn=(E k(zp) kŒ(zpŒ))p, pŒ=1,..., n, Cn=(E kŒ(zp) kŒ(zpŒ))p, pŒ=1,..., n. (84)

For n=1, formula (80) reduces to

K1(z)=
1
p

An(z) Cn(z)−Bn(z) Bn(z)
A2

n(z)
, (85)

where

An(z)=E k(z) k(z), Bn(z)=
“An(z)
“z

, Cn(z)=
“
2An(z)
“z“z

. (86)
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The 1-point correlation function K1(z) is nothing else than the density
function of the distribution of zeros and formula (85) is equivalent to the
Poincaré–Lelong type formula (13).

The normalized correlation function kn(z1,..., zn) is defined as

kn(z1,..., zn)=
Kn(z1,..., zn)

K1(z1) · · ·K1(zn)
. (87)

It satisfies the following theorem.

Theorem 3.2. The function kn(z1,..., zn) is invariant with respect to
the action of the group SU(1, 1),

kn(Az1,..., Azn)=kn(z1,..., zn), -A ¥ SU(1, 1), (88)

where

Az=
az+b
cz+d

. (89)

Remark. This implies that kn(z1,..., zn) is a function of pairwise dis-
tances y(zp, zq) defined by (74).

Proof. By Theorem 3.1, the distribution Kn(z1,..., zn) dz1 · · · dzn is
SU(1, 1) invariant. Also, the distribution K1(z1) · · ·K1(zn) dz1 · · · dzn is
SU(1, 1) invariant. Hence their quotient (the Radon–Nikodim derivative),

Kn(z1,..., zn) dz1 · · · dzn
K1(z1) · · ·K1(zn) dz1 · · · dzn

=kn(z1,..., zn) (90)

is SU(1, 1) invariant, which was stated. Theorem 3.2 is proved.
The normalized correlation function can be expressed as a supersym-

metric (Berezin) integral,

kn(z1,..., zn)=
1

det An
F

1
det[I+Ln(z) W]

dg, (91)

where W is n×n matrix,

W=(dppŒgpŒ ḡp)p, pŒ=1,..., n, (92)

and the gp, ḡp are anti-commuting (fermionic) variables, with dg=
<p dḡpdgp. The integral in (91) is a Berezin integral, which is evaluated by
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simply taking the coefficient of the top degree form of the integrand
1

det[I+Ln(z) W]
. For a derivation of formula (91), see ref. 14.

3.3. The Two-Point Correlation Function

From (50), (67), (81), and (84), we can directly obtain the following
expressions for An, Bn, and Cn in the case of a two-point correlation func-
tion k2(z1, z2):

A2=R
s11 −L s12 −L

s21 −L s22 −L
S

B2=R
Lz1s11 −L−1 Lz1s12 −L−1

Lz2s21 −L−1 Lz2s22 −L−1
S

C2=R
L(1+L|z1 |2) s11 −L−2 L(1+Lz1z2) s12 −L−2

L(1+Lz1z2) s21 −L−2 L(1+L|z2 |2) s22 −L−2
S ,

(93)

with s11=1−|z1 |2, s12=1−z1z2, s21=1−z1z2, and s22=1−|z2 |2. By
Theorem 3.2, k2(z1, z2) is SU(1, 1) invariant, that is

k2(Az1, Az2)=k2(z1, z2), -A ¥ SU(1, 1). (94)

The action of SU(1, 1) is transitive, hence we can move z1 to the origin,
and by rotation, we can then move z2 to the positive half-axis. Therefore,
we will assume that z1=0 and z2=r > 0. In that case, Eqs. (93) become

A2=R
1 1
1 (1−r2)−L

S

B2=R
0 0
Lr Lr(1−r2)−L−1

S

C2=R
L L
L L(1+Lr2)(1−r2)−L−2

S .

(95)

From (95) and (83), we further obtain

L2=RL−L2r2 1
b L−L2r2 a

b

L−L2r2 a
b L(1+Lr2)(1−r2)−L−2−L2r2 a2

b

S , (96)
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where a=(1−r2)−L−1 and b=(1−r2)−L−1. For the two-point case,
formula (80) reduces to the following expression:

K2(z1, z2)=
1

p2 det A2
(L2, 11L2, 22+L2, 12L2, 21), (97)

which, when combined with (87), (85), and (67), results in the following
formula for the normalized two-point correlation function:

k2(z1, z2)=[(1−r2)3L+2+((L2−2L−2) r4+(4L+4) r2−1)(1−r2)2L

+((L+1)2r4−(4L+2) r2−1)(1−r2)L+1]/(1−(1−r2)L)3,
(98)

where according to (75),

r=tanh 1 y
2
2= |z1 −z2 |

|1−z1z2 |
. (99)

When L=1, formula (98) simplifies to

k2(z1, z2)=r2(2−r2), L=1. (100)

Plots of k2(tanh(
y
2)) for L=1, 5 and 50 are shown in Fig. 4.

As it can be seen from the plot, the two-point correlation function
goes to 0 as yQ 0 (or, in other words, as rQ 0). The limiting behavior can
be obtained through a series expansion of (98). The following expression
was obtained using MapleTM:

k2(r)=
1
2
(L+1)2

L
r2−

1
4
(L+1)2

L
r4−

1
36

(L2−1)2

L
r6

−
1
72

(L2−1)2

L
r8+O(r10), (101)

which shows dominating quadratic behavior in the neighborhood of r=0.
Thus, there is a quadratic repulsion between zeros.

We are also interested in the asymptotic behavior of the correlation
function as LQ.. For this purpose, we introduce the scaling

r=
u

`L
. (102)
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Fig. 4. The two-point correlation function.

Substituting this into (98) and taking the limit LQ., we obtain the
following expression:

k2(u)=
e3 u2+(u4−4u2−1) e2 u2+(u4+4u2−1) eu2+1

(eu2−1)3
, (103)

which can also be written as

k2(u)=
(sinh2 t+t2) cosh t−2t sinh t

sinh3 t
, t=

u2

2
, (104)

and agrees with the result obtained by Hannay. (1) A plot of (104) is shown
in Fig. 5.

In fact, under the scaling (102), the SU(1, 1) random analytic function
converges, as LQ., to the W1 random analytic function (cf. ref. 8).
Indeed,

k1 u
`L
2= C

.

m=0

=L(L+1) · · · (L+m−1)
Lmm!

amum. (105)
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Fig. 5. Asymptotics of the two-point correlation function as LQ..

As LQ., the expression under the radical approaches 1/m!, so that
k(u/`L) approaches

k0(u)= C
.

m=0

= 1
m!

amum, (106)

which is theW1 random analytic function.

APPENDIX. CORRELATIONS BETWEEN INNER AND OUTER ZEROS

In this Appendix, we consider the limit of correlations between zeros
of the random polynomial (6) as NQ.. In the open disk {|z| < 1}, the
random polynomial (6) approaches the SU(1, 1) random analytic function
(50), and the correlations between zeros of the random polynomial
approach the ones of the random analytic function. However, according to
formula (49), there is a 1/(L+1) fraction of the zeros outside of the unit
disk. The limiting correlations between those, outer zeros, and between
inner and outer zeros are described by the following theorem. Let
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kL
n (z1,..., zn) denote the normalized n-point correlation function (87) corre-
sponding to the parameter L. Indication of L is important for the theorem.
Let furthermore kL

nN(z1,..., zn) denote the normalized n-point correlation
function for the zeros of polynomial (6).

Theorem A.1. Assume that |z1 |,..., |zm | < 1 and |zm+1 |,..., |zn | > 1.
Then

lim
NQ.

kL
nN(z1,..., zn)=kL

m(z1,..., zm) k
1
n−m(z

−1
m+1,..., z

−1
n ), (107)

so that in the limit NQ., the inner and outer zeros become independent,
and the limiting correlations between the outer zeros coincide, after the
change of variable zQ 1/z in the argument, with the correlations between
zeros of the SU(1, 1) random analytic function with the parameter L=1.

Proof. We will first find correlations between the outer zeros and
then prove the independence of the inner and outer zeros.

Correlations between outer zeros. Consider the random polynomial
(6) and define another random polynomial,

j(z)=
1

`CN
N+L−1

zNk(z−1). (108)

Observe that if zj, |zj | > 1, is a zero of k(z) then z−1
j is a zero of j(z) and

|z−1
j | < 1. Consider j(z) in the disk |z| < 1. From (6),

j(z)=aN+=
N· · · (N+L−2)

(N+1) · · · (N+L−1)
aN−1z

+=(N−1) · · · (N+L−3)
(N+1) · · · (N+L−1)

aN−2z2+·· · . (109)

As NQ., the expressions under the radicals approach 1 from below. In
addition, we can replace aN−m by am, because they are the same standard
random variables. Thus, as NQ., j(z) approaches the random function

j(z)=a0+a1z+a2z2+·· · , |z| < 1, (110)

which is the SU(1, 1) random analytic function with the parameter L=1.
Observe that j(z) is a Gaussian random polynomial and for its correla-
tions we have formula (80). From this formula, we obtain the convergence
of correlations between zeros of j(z) as NQ. to the ones of the SU(1, 1)
random analytic function with L=1.
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Independence. We introduce the random function g(z) such that
g(z)=k(z) for |z| [ 1 and

g(z)=
1

`CN
N+L−1

z−Nk(z), |z| > 1. (111)

Then the zeros of g(z) and k(z) coincide. In addition, g(z) is a Gaussian
random field and its covariance function E(g(z) g(zŒ)) coincides with
E(k(z) k(zŒ)) when |z|, |zŒ| < 1, and hence, as NQ., it approaches the
correlation function (63) of the SU(1, 1) random analytic function with the
parameter L. Similarly, as we saw above in this appendix, when |z|, |zŒ| > 1,
E(g(z) g(zŒ)) approaches the SU(1, 1) covariance function with L=1, if we
replace z, zŒ by z−1, zŒ−1, respectively. Consider now the correlation function
E(g(z) g(zŒ)) when |z| > 1 and |zŒ| < 1. From (111),

E(g(z) g(zŒ))=
1

zN
`CN

N+L−1

C
N

m=0
Cm

L+m−1(zzŒ)
m. (112)

Assume that |zzŒ| [ 1. Then we can estimate the correlation function as
follows:

|E(g(z) g(zŒ))| [
1

|z|N`CN
N+L−1

C
N

m=0
Cm

L+m−1 [
NL

|z|N
. (113)

If |zzŒ| > 1, then we similarly obtain that

|E(g(z) g(zŒ))|=: zŒN

`CN
N+L−1

C
N

m=0
Cm

L+m−1(zzŒ)
m−N : [NL |zŒ|N. (114)

Combining the two cases we can write

|E(g(z) g(zŒ))| [NL(max{|z|−1, |zŒ|})N. (115)

This shows that the values of g(z) inside and outside of the unit disk
become independent as NQ.. Hence their zeros become independent.
Explicit estimates for the correlations between the inner and outer zeros
follow from formula (80) applied to g(z).
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